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THERMOELASTIC CONTACT OF A SHROUD RING AND A CYLINDER

UNDER UNSTEADY FRICTION-INDUCED HEAT RELEASE

UDC 539.3P. P. Krasnyuk

Mathematical formulation is performed and a solution is found for a quasi-static thermoelastic prob-
lem of contact interaction of an elastic shroud ring and a hollow circular cylinder inserted into this
ring, which are compressed by a load varied along the axis of the system, under the condition of an
unloaded contact over the ring surface or over the circumference contour. The radial displacements
of the contact surface of the shroud ring are approximated by displacements of the surface of a long
circular hollow cylinder. Unsteady friction-induced heat release caused by the action of friction forces
owing to shroud ring rotation over the cylinder with a time-dependent low angular velocity is taken
into account. The problem is reduced to a system of integral equations whose structure is determined
by the form of thermophysical contact conditions. A numerical algorithm of the solution is proposed,
and the influence of the problem parameters on the contact pressure and temperature distributions is
considered. Based on an analysis of results, a conclusion is made that the character of axial variation
of the compressing load has a significant effect on the distribution of contact pressure in describing
the kinematic condition of interaction of bodies in accordance with Hertz’s theory.

Key words: contact interaction, shroud ring, cylinder, friction-induced heat release, unsteady
temperature, Hertz’s theory.

Introduction. The study of contact interaction of cylindrical bodies are important both for theory and
for applications because the hollow cylinder is the most widely used element in mechanical engineering. Contact
problems for cylindrical bodies are considered in calculating frictionless bearings, rolling-mill shafts, braking devices,
rollers of bridge piers, etc.

In particular, tight planting of a rigid bushing onto an elastic cylinder was considered in [1]. The problem
posed was reduced to the Fredholm integral equation of the first kind with a kernel containing a logarithmic
singularity. Interaction of a rigid insert with the shaft surface in an elastic half-space and the contact of an elastic
shroud ring with an elastic cylinder were examined in the monograph [2].

An axisymmetric contact problem of compressing of a long circular cylinder by a tightly planted elastic ring
was considered in [3]. A formula determining the contact pressure as a function of tension was derived.

Results of studying the contact with a gap between a cylinder and an iron ring were described in the
monograph [4], and the external contact of a pair of rotating circular cylinders with allowance for heat release owing
to friction forces was considered in [5].

The problem of compression of a long cylinder by an elastic shroud ring with an inner radius a0 + ε(z)
providing an initial unloaded contact of bodies over the ring surface or over the circumference contour was considered
in [6] in the elastic formulation and in [7] in the thermoelastic formulation with steady heat release. As the interaction
of bodies with noncorrelated shapes was considered, it was assumed that the radial displacements of the contact
surface of the shroud ring could be approximated by displacements of the surface of a long circular hollow cylinder.
In the present study, a mathematical formulation is proposed and a solution is obtained for a quasi-static contact
problem with allowance for unsteady friction-induced heat release in the tribosystem considered.
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Fig. 1. Layout of the contact interaction of an elastic shroud ring and a cylinder: (a) contact over the ring surface
(constant contact zone); (b) contact over the circumference contour (varied boundary of interaction).

Mathematical Formulation of the Problem and Construction of the Solution. Let us consider a
tribosystem composed of a cylinder with an inner radius a1 and an outer radius a0, which is inserted into a long
elastic shroud ring with an inner radius a0 + ε(z) and an outer radius a2; radial stresses q1 and q2 depending on the
axial coordinate and time are set on the surface r = a1 and r = a2 of this system. We consider this tribosystem in
a cylindrical coordinate system by choosing a certain zero cross section and directing the z axis along the cylinder
centerline. Without loss of generality, we assume that the load is defined by a function symmetric with respect to
the cross section z = 0.

The function ε(z) determining the gap between the bodies is positive and significantly smaller than a0 for
all values of |z| < ∞. In addition, we assume that ε(0) = ε′(0) = 0. Then, depending on the choice of the gap
function, we can obtain a problem with a fixed contact zone 2c0 [ε(z) = ε0(1 − S(c0 − |z|)), where S(z) is the
Heaviside function [8]; Fig. 1a] or with a zone of unknown length 2c (Fig. 1b). In the second case, the function can
be chosen in the form ε(z) = ε0(1− exp (−δz2)), where the parameters ε0 and δ are small quantities.

Let the shroud ring be motionless and the cylinder rotate with a low angular velocity ω depending on time.
Owing to the action of friction forces arising on the contacting surfaces and obeying the Amonton law (τrθ = fσr),
heat release proceeds in the interaction region, the thermal contact of the bodies is not ideal, and heat transfer
between the noncontacting surfaces of the shroud ring, cylinder, and zero-temperature ambient medium follows
Newton’s law. Neglecting dynamic effects that can arise under the action of the load, we study the behavior of this
tribosystem in a quasi-static formulation.

In accordance with Hertz’s theory [2, 9], we assume that the radial displacements of the shroud ring surface
r = a0 induced by force and thermal factors can be fairly accurately approximated by the radial displacements of
the surface r = a0 of the elastic cylinder. Then, on the fixed zone of the contact, the kinematic condition of the
cylinder–shroud ring interaction is

u(1)
r (a0, z, τ) = u(2)

r (a0, z, τ), |z| < c0,

or, if the boundary of the interaction region is unknown,

u(1)
r (a0, z, τ) = u(2)

r (a0, z, τ) + ε(z), |z| ≤ c. (1)

In addition, assuming that the contact zone along the z coordinate is small, we can expand the gap function into a
Taylor series and, taking into account the evenness of the function ε(z) and rejecting terms up to the order 2(n−1)
inclusive, assume that ε(z) = Az2n in Eq. (1), where A = ε(2n)(0)/(2n)!. The parameter n is responsible for the
contact density [9].

We assume that the load behaves at infinity so that it admits the possibility of using the integral Fourier
transform in constructing the problem solution. As the load is independent of the angular coordinate θ, this problem
can be considered as axisymmetric in determining the temperature fields, heat fluxes, thermoelastic stresses, and
displacements. Under the assumptions made, the problem is reduced to integration of a system including:
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— the differential heat-conduction equations

∂2
rTj + r−1 ∂rTj + ∂2

zTj = k−1
j ∂τTj ; (2)

— equilibrium equations
∂rσ

(j)
r + r−1(σ(j)

r − σ(j)
θ ) + ∂zτ

(j)
rz = 0, ∂rτ

(j)
rz + r−1τ (j)

rz + ∂zσ
(j)
z = 0;

— equations of compatibility of strains
∂rε

(j)
θ + r−1(ε(j)θ − ε(j)r ) = 0, r ∂2

zε
(j)
θ + ∂rε

(j)
z = ∂zγ

(j)
rz ;

— the relations of Hooke’s law
Ejε

(j)
r = σ(j)

r − νj(σ
(j)
θ + σ(j)

z ) + EjαjTj , Ejε
(j)
θ = σ

(j)
θ − νjσ

(j)
r + σ(j)

z ) + EjαjTj ,

Ejε
(j)
z = σ(j)

z − νj(σ(j)
r + σ

(j)
θ ) + EjαjTj , Ejγ

(j)
rz = 2(1 + νj)τ (j)

rz (j = 1, 2)

under the initial conditions
Tj(r, z, 0) = 0, (3)

boundary conditions
r = a1: ∂rT1 = γ1T1, σ(1)

r = −q1(z, τ), τ (1)
rz = 0; (4)

r = a2: ∂rT2 = −γ2T2, σ(2)
r = −q2(z, τ), τ (2)

rz = 0, (5)

and contact conditions
r = a0, |z| ≤ c(τ): λ1 ∂rT1 − λ2 ∂rT2 = fω(τ)a0p(z, τ); (6)

λ1 ∂rT1 + λ2 ∂rT2 + h(T1 − T2) = 0; (7)

σ(1)
r = σ(2)

r = −p(z, τ), τ (j)
rz = 0, u(1)

r = u(2)
r +Az2n; (8)

r = a0, |z| > c(τ): ∂rTj = ∓γ0,jTj , σ(j)
r = 0, τ (j)

rz = 0.

Hereinafter, r and z are the radial and axial coordinates, τ is the time, p(z, τ) is the contact pressure, qj(z, τ) is the
external load on the noncontacting surfaces of the tribosystem, ω(τ) is the relative angular velocity of revolution,
Tj is the temperature, σ(j)

r , σ(j)
θ , and σ

(j)
z are the radial, tangential, and axial normal stresses, τ (j)

rz is the shear
stress, ε(j)r , ε(j)θ , and ε(j)z are the radial, tangential, and axial linear strains, γ(j)

rz is the shear strain, u(j)
r is the radial

displacement, Ej is Young’s modulus, νj , λj , kj , and αj are the Poisson’s ratio, thermal conductivity, thermal
diffusivity, and linear thermal expansion, respectively, γj = ᾱj/λj , γj,0 = ᾱj,0/λj , ᾱj and ᾱj,0 are the heat-transfer
coefficients, f is the friction coefficient, and h is the thermal conductivity of the contact-area surface. The value
j = 1 and the upper sign in the combinations “±” and “∓” refer to the cylinder; the value j = 2 and the lower sign
in these combinations refer to the elastic shroud ring.

We find the unknown half-width of the contact zone c(τ) from the condition p(±c(τ), τ) = 0, which is valid
for ε(z) = Az2n or for mechanical and thermophysical parameters of the tribosystem such that the contact takes
place in a zone smaller than the initial one c(τ) = c0 = const [ε(z) = 0].

We reduce the problem to a system of integral equations with respect to the contact pressure p(z, τ) and
two functions fj(z, τ) (j = 1, 2):

fj(z, τ) = (±∂rTj(a0, z, τ) + γ0,jTj(a0, z, τ))S(c(τ)− |z|).

For this purpose, we express the cylinder temperature in terms of these functions by constructing the solution of the
heat-conduction equation (2) under the initial condition (3) and corresponding relations in the boundary conditions
(4) and (5) with the use of the equation

∂rTj(a0, z, τ) = ±(fj(z, τ)− γ0,jTj(a0, z, τ)).

As the symmetry of the load ensures the evenness of the functions of the problem solution with respect to
the cross section z = 0, then, using the integral cosine Fourier transform with respect to the z coordinate

T̄j(r, ξ, τ) =

∞∫
0

Tj(r, z, τ) cos (zξ) dz
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in constructing the solution for the heat-conduction problem and Duhamel’s theorem with respect to the time τ
[10], we obtain the following integral image for the Fourier transform of the cylinder temperature T̄j(r, ξ, τ):

T̄j(r, ξ, τ) = ∂τ

τ∫
0

f̄j(ξ, η)Φ̄j(r, ξ, τ − η) dη (9)

[f̄j(ξ, τ) is the Fourier transform of the function fj(z, τ)]. The kernel of the integral image is determined by solving
the auxiliary problem

∂2
r Φ̄j + r−1 ∂rΦ̄j − ξ2Φ̄j = k−1

j ∂τ Φ̄j , Φ̄j(r, ξ, 0) = 0,

∂rΦ̄j(aj , ξ, τ) = ±γjΦ̄j(aj , ξ, τ), ∂rΦ̄j(a0, ξ, τ) = ±(1− γ0,jΦ̄j(a0, ξ, τ)).

Without giving too many details of solving this problem (the solution is very similar to that described in
[11]), we only write the final result

Φ̄j(r, ξ, τ) = Φ̄j,st(r, ξ) + Φ̄j,0(r, ξ, τ)

= ± I0(ξr)(ξK1(ξaj)± γjK0(ξaj)) +K0(ξr)(ξI1(ξaj)∓ γjI0(ξaj))
(ξI1(ξa0)± γ0,jI0(ξa0))(ξK1(ξaj)± γjK0(ξaj))− (ξK1(ξa0)∓ γ0,jK0(ξa0))(ξI1(ξaj)∓ γjI0(ξaj))

∓ 2a0

∞∑
m=1

U0(µj,mr, µj,ma0)U0(µj,ma0, µj,ma0)
(µ2

j,m + ξ2)N2
j,m

exp (−kj(µ2
j,m + ξ2)τ), (10)

where µj,m (m = 1, 2, . . . ) are the positive roots of the transcendental equation of the Sturm–Liouville problem

µjU1(µjaj , µja0)± γjU0(µjaj , µja0) = 0 (µj 6= 0);

N2
j = a2

0(1 + γ2
0,jµ

−2
j )U2

0 (µja0, µja0)− a2
j (1 + γ2

jµ
−2
j )U2

0 (µjaj , µja0);

U0(µjr, µja0) = J0(µjr)(µjY1(µja0)∓ γ0,jY0(µja0))− Y0(µjr)(µjJ1(µja0)∓ γ0,jJ0(µja0));

U1(µjr, µja0) = J1(µjr)(µjY1(µja0)∓ γ0,jY0(µja0))− Y1(µjr)(µjJ1(µja0)∓ γ0,jJ0(µja0));

Jν(z) and Yν(z) are the Bessel functions of order ν of the first and second kind, and Iν(z) and Kν(z) are the
modified Bessel functions of order ν of the first and second kind [12].

Inverting the Fourier integral [10]

Tj(r, z, τ) =
2
π

∞∫
0

T̄j(r, ξ, τ) cos (ξz) dξ,

we write the integral image for the temperature of the bodies

Tj(r, z, τ) =
1
π
∂τ

τ∫
0

c(η)∫
−c(η)

fj(t, η)Φj(r, t− z, τ − η) dt dη. (11)

Here

Φj(r, z, τ) =

∞∫
0

Φ̄j(r, ξ, τ) cos (ξz) dξ =

∞∫
0

Φ̄j,st(r, ξ) cos (ξz) dξ

∓ a0
π

2

∞∑
m=1

U0(µj,mr, µj,ma0)U0(µj,ma0, µj,ma0)
µj,mN2

j,m

×
2∑

k=1

exp ((−1)kµj,mz) erfc
(
µj,m

√
kjτ + (−1)k z

2
√
kjτ

)
,

where erfc (z) is the error function [8].
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Using relations (9) and (10) for the temperature transform, we construct (similarly to Eq. (2.15) in [11])
relations for the transforms of the radial displacements on the surface r = a0:

ū(j)
r (a0, ξ, τ) = (1− ν2

j )E−1
j (a0p̄(ξ, τ)∆̄1(aj , ξ)− aj q̄j(ξ, τ)∆̄2(aj , ξ)) + αj ∂τ

τ∫
0

f̄j(ξ, η)H̄j(ξ, τ − η) dη.

Here

H̄j(ξ, τ) = H̄j,st(ξ) + H̄j,0(ξ, τ);

H̄j,st(ξ) = (1− ν2
j )ξ−2

[
∆̄2(aj , ξ) ∂rΦ̄j,st(aj , ξ)− (∆̄1(aj , ξ)− (1− νj)−1) ∂rΦ̄j,st(a0, ξ)

]
;

H̄j,0(ξ, τ) = ±2(1 + νj)a0

∞∑
m=1

U0(µj,ma0, µj,ma0)
N2

j,m(ξ2 + µ2
j,m)2

×
[
ξ2(∆̄1(aj , ξ)a0U0(µj,ma0, µj,ma0)− ∆̄2(aj , ξ)ajU0(µj,maj , µj,ma0))

+ µj,m(∆̄3(aj , ξ)U1(µj,maj , µj,ma0) + ∆̄4(aj , ξ)U1(µj,ma0, µj,ma0))
]
exp (−kj(ξ2 + µ2

j,m)τ);

q̄j(ξ, τ) =

∞∫
0

qj(z, τ) cos (ξz) dz; ∆̄j(aj , ξ) = ∆̃j(aj , ξ)∆̃−1
0 (aj , ξ);

∆̃0(aj , ξ) = 4(1− νj) + a2
jξ

2 + a2
0ξ

2 + (2(1− νj) + a2
jξ

2)(2(1− νj) + a2
0ξ

2)

× [I1(ajξ)K1(a0ξ)− I1(a0ξ)K1(ajξ)]2 − a2
jξ

2(2(1− νj) + a2
0ξ

2)

× [I0(ajξ)K1(a0ξ) + I1(a0ξ)K0(ajξ)]2 − a2
0ξ

2(2(1− νj) + a2
jξ

2)

× [I1(ajξ)K0(a0ξ) + I0(a0ξ)K1(ajξ)]2 + a2
ja

2
0ξ

4[I0(ajξ)K0(a0ξ)− I0(a0ξ)K0(ajξ)]2;

∆̃1(aj , ξ) = 2
[
1 + (2(1− νj) + a2

jξ
2)[I1(ajξ)K1(a0ξ)− I1(a0ξ)K1(ajξ)]2

− a2
jξ

2[I0(ajξ)K1(a0ξ) + I1(a0ξ)K0(ajξ)]2
]
;

∆̃2(aj , ξ) = 2a0ξ[I1(ajξ)K0(a0ξ) + I0(a0ξ)K1(ajξ)]− 2ajξ[I0(ajξ)K1(a0ξ) + I1(a0ξ)K0(ajξ)];

∆̃3(aj , ξ) = 2
[
(2(1− νj) + a2

jξ
2)[I1(ajξ)K1(a0ξ)− I1(a0ξ)K1(ajξ)]− aja0ξ

2[I0(ajξ)K0(a0ξ)− I0(a0ξ)K0(ajξ)]
]
;

∆̃4(aj , ξ) = −2a0ξ
[
(2(1− νj) + a2

jξ
2)(I1(ajξ)K0(a0ξ) +K1(ajξ)I0(a0ξ))(I1(ajξ)K1(a0ξ)− I1(a0ξ)K1(ajξ))

− a2
jξ

2(I0(ajξ)K1(a0ξ) +K0(ajξ)I1(a0ξ))(I0(ajξ)K0(a0ξ)−K0(ajξ)I0(a0ξ))
]
.

Inverting the integral Fourier transform, we write the formulas for the radial displacements on the contact
surface

u(j)
r (a0, z, τ) =

1− ν2
j

Ej

a0

π

c(τ)∫
−c(τ)

p(t, τ)∆1(aj , t− z) dt

−
1− ν2

j

Ej

2aj

π

∞∫
0

q̄j(ξ, τ)∆̄2(aj , ξ) cos (ξz) dξ +
αj

π
∂τ

τ∫
0

c(η)∫
−c(η)

fj(t, η)Hj(t− z, τ − η) dt dη,
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where

∆1(aj , z) =

∞∫
0

∆̄1(aj , ξ) cos (ξz) dξ; Hj(z, τ) =

∞∫
0

H̄j(ξ, τ) cos (ξz) dξ.

To determining the unknown contact pressure p(z, τ) and the function fj(z, τ), we use the last boundary
conditions, namely, the thermophysical conditions (6) and (7) and the kinematic conditions [the third condition in
(8)] of the contact. The form of the thermophysical contact conditions determines the structure of integral equations
of the problem posed.

In the case of an ideal thermal contact (h→∞), the sought functions are assumed to be f0,j(z, τ) and the
temperature of the contact zone T1(a0, z, τ) = T2(a0, z, τ) = T (z, τ) for |z| ≤ c(τ), which are related to the contact
pressure p(z, τ) and the functions fj(z, τ) as

fj(z, τ) = f0,j(z, τ) + γ0,jT (z, τ), λ1f0,1(z, τ) + λ2f0,2(z, τ) = fω(τ)a0p(z, τ).

In this case, the problem reduces to a system of integral equations

T (z, τ) =
1
π
∂τ

τ∫
0

c(η)∫
−c(η)

f0,1(t, η)Φ1(a0, t− z, τ − η) dt dη +
γ0,1

π
∂τ

τ∫
0

c(η)∫
−c(η)

T (t, η)Φ1(a0, t− z, τ − η) dt dη; (12)

T (z, τ) =
1
π
∂τ

τ∫
0

c(η)∫
−c(η)

f0,2(t, η)Φ2(a0, t− z, τ − η) dt dη +
γ0,2

π
∂τ

τ∫
0

c(η)∫
−c(η)

T (t, η)Φ2(a0, t− z, τ − η) dt dη; (13)

2∑
k=1

λk

π

c(τ)∫
−c(τ)

f0,k(t, τ)∆(t− z) dt+ fω(τ)a0

2∑
k=1

(−1)kαkE0

π
∂τ

τ∫
0

c(η)∫
−c(η)

(f0,k(t, η) + γ0,kT (t, η))Hk(t− z, τ − η) dt dη

= fω(τ)a0

2∑
k=1

(−1)k 1− ν2
k

Ek

2akE0

π

∞∫
0

q̄k(ξ, τ) ∆̄2(ak, ξ) cos (ξz) dξ − fω(τ)a0AE0z
2n, |z| ≤ c(τ), (14)

where
E0 =

(
2
(1− ν2

1

E1
+

1− ν2
2

E2

))−1

;

∆(z) =

∞∫
0

∆̄(ξ) cos (ξz) dξ = a0E0

∞∫
0

[ 2∑
k=1

(−1)k 1− ν2
k

Ek
∆̄1(ak, ξ)

]
cos (ξz) dξ.

For the temperature of the bodies, we obtain a new integral image

Tj(r, z, τ) =
1
π
∂τ

τ∫
0

c(η)∫
−c(η)

f0,j(t, η) Φj(r, t− z, τ − η) dt dη +
γ0,j

π
∂τ

τ∫
0

c(η)∫
−c(η)

T (t, η) Φj(r, t− z, τ − η) dt dη.

If the surfaces r = a0 outside the contact area are thermally insulated (γ0,j = 0), the problem becomes significantly
simplified: we have to solve a system of only two integral equations with respect to the functions f0,j(z, τ):

1
π
∂τ

τ∫
0

c(η)∫
−c(η)

f0,1(t, η)Φ1(a0, t− z, τ − η) dt dη −
1
π
∂τ

τ∫
0

c(η)∫
−c(η)

f0,2(t, η)Φ2(a0, t− z, τ − η) dt dη = 0; (15)

2∑
k=1

λk

π

c(τ)∫
−c(τ)

f0,k(t, τ)∆(t− z) dt+ fω(τ)a0

2∑
k=1

(−1)kαkE0

π
∂τ

τ∫
0

c(η)∫
−c(η)

f0,k(t, η)Hk(t− z, τ − η) dt dη

= fω(τ)a0

2∑
k=1

(−1)k 1− ν2
k

Ek

2akE0

π

∞∫
0

q̄k(ξ, τ) ∆̄2(ak, ξ) cos (ξz) dξ − fω(τ)a0AE0z
2n, |z| ≤ c(τ). (16)
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In addition, if ω(0) = 0 at the initial time, then we have f0,j(t, 0) = T (t, 0) = 0, and the contact pressure is found
from the integral equation

1
π

c(0)∫
−c(0)

p(t, 0)∆(t− z) dt =
2∑

k=1

(−1)k 1− ν2
k

Ek

2akE0

π

∞∫
0

q̄k(ξ, 0)∆̄2(ak, ξ) cos (ξz) dξ −AE0z
2n.

In the case of a nonideal thermal contact, the sought functions are chosen to be the contact pressure p(z, τ)
and the temperature of the contact zone T0,j(z, τ) = Tj(a0, z, τ) for |z| ≤ c(τ), which are related to fj(t, τ) by the
thermophysical conditions of the contact (6) and (7). Therefore, we have

fj(t, τ) =
fω(τ)a0

2λj
p(t, τ) +

(
γ0,j −

h

2λj

)
T0,j(t, τ) +

h

2λj
T0,3−j(t, τ).

Substituting these expressions into Eq. (11), we obtain a new integral image for the cylinder temperature:

Tj(r, z, τ) =
fa0

2πλj
∂τ

τ∫
0

ω(η)

c(η)∫
−c(η)

p(t, η)Φj(r, t− z, τ − η) dt dη

+
(
γ0,j −

h

2λj

) 1
π
∂τ

τ∫
0

c(η)∫
−c(η)

T0,j(t, η)Φj(r, t− z, τ − η) dt dη

+
h

2πλj
∂τ

τ∫
0

c(η)∫
−c(η)

T0,3−j(t, η) Φj(r, t− z, τ − η) dt dη. (17)

Using this expression at the contact zone |z| ≤ c(τ), we obtain two integral equations for determining the unknown
T0,j(z, τ); together with the relation

a0E0

π

c(τ)∫
−c(τ)

p(t, τ)
[ 2∑

k=1

(−1)k 1− ν2
k

Ek
∆1(ak, t− z)

]
dt

+
2∑

k=1

(−1)kαkE0fa0

2πλk
∂τ

τ∫
0

ω(η)

c(η)∫
−c(η)

p(t, η)Hk(t− z, τ − η) dt dη

+
2∑

k=1

(−1)kαkE0

π

(
γ0,k −

h

2λk

)
∂τ

τ∫
0

c(η)∫
−c(η)

T0,k(t, η)Hk(t− z, τ − η) dt dη

+
2∑

k=1

(−1)kαkE0h

2πλk
∂τ

τ∫
0

c(η)∫
−c(η)

T0,3−k(t, η)Hk(t− z, τ − η) dt dη

=
2∑

k=1

(−1)k 1− ν2
k

Ek

2akE0

π

∞∫
0

q̄k(ξ, τ) ∆̄2(ak, ξ) cos (ξz) dξ −AE0z
2n, |z| ≤ c(τ), (18)

we obtain the full system of equations for the problem posed.
Definition and Construction of the Numerical Algorithm. Based on the method of trapezoids [8]

and using the results of [11, 13], we perform time discretization of the systems of integral equations (12)–(14), (15),
and (16) or (17) and (18) in the interval [0, τ∗] where the behavior of the tribosystem is examined [this interval is
divided into N time steps τk = kτ1 (k = 0, . . . , N), where τN = τ∗] by the formulas
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F (z, 0) = 0, F (z, τ1) = 0.5G1(z, τ1,1) + 0.25G1(z, τ0,2),

F (z, τ2) = 0.5G2(z, τ2,1) + 0.5G2(z, τ1,2) + 0.25(G2(z, τ0,3)−G2(z, τ0,1)),
(19)

F (z, τn) = 0.5Gn(z, τn,1) + 0.5Gn(z, τn−1,2) + 0.5
n−2∑
k=1

(
Gn(z, τk,n+1−k)−Gn(z, τk,n−1−k)

)

+ 0.25
(
Gn(z, τ0,n+1)−Gn(z, τ0,n−1)

)
(n ≥ 3)

for integrals of the form

F (z, τ) =
1
π
∂τ

τ∫
0

c(η)∫
−c(η)

f(t, η)Φ(t− z, τ − η) dt dη, Φ(z, 0) = 0,

where

Gm(z, τi,j) =
1
π

c(τi)∫
−c(τi)

f(t, τi)Φ(t− z, τj) dt, |z| ≤ c(τm).

We find the kernels ∆(z), Hj(z, τ), and Φj(r, z, τ) and the right side of the integral equations (14), (16),
and (18) by the schemes

∆(z) = − ln |z|+
λ1∫
0

∆̄(ξ) cos (ξz) dξ −

{
lnλ1 + γ, z = 0,

Ci (λ1|z|)− ln |z|, z 6= 0,

Hj(z, τ) =

λj,2∫
0

H̄j(ξ, τ) cos (ξz) dξ ± (1 + νj)
[cos (λj,2z)

λj,2
+ |z|

(
Si(λj,2|z|)−

π

2

)]
,

Φj,st(a0, z) = − ln |z|+
λj,3∫
0

Φ̄j,st(a0, ξ) cos (ξz) dξ −

{
lnλj,3 + γ, z = 0,

Ci (λj,3|z|)− ln |z|, z 6= 0,

(20)

Φj,st(r, z) =

λj,3∫
0

Φ̄j,st(r, ξ) cos (ξz) dξ +
1
2

√
a0

r

2∑
k=1

E1(±λj,3(a0 − r + (−1)k−1iz)) (r 6= a0),

2∑
k=1

(−1)k 1− ν2
k

Ek

2akE0

π

∞∫
0

q̄k(ξ, τ) ∆̄2(ak, ξ) cos (ξz) dξ =
1− ν2

2

E2

2a2E0

π
q(τ)(I0(L+ z) + I0(L− z)),

I0(z) =

λ4∫
0

∆̄2(a2, ξ)− ∆̄2(a2, 0)
ξ

sin (ξz) dξ+∆̄2(a2, 0) Si (λ4z)+
2(a2 − a0)
i
√
a2a0

2∑
k=1

(−1)k−1E1(λ4(a2−a0 +(−1)kiz)),

where the inner surface of the tribosystem is free from the load [q1(z, τ) = 0], and the load on the outer surface
varies by the law q2(z, τ) = q(τ)S(L − |z|), Si (z) and Ci (z) are the integral sine and cosine, E1(z) is the integral
exponential function, γ is the Euler constant [12], and i (i2 = −1) is the imaginary unity. We take into account
that the Fourier transforms of the kernels ∆̄1(aj , ξ), ∆̄2(aj , ξ), H̄j(ξ, τ), and Φ̄j(r, ξ, τ) possess the properties

∆̄1(aj , 0) =
1

1− ν2
j

(a2
j + a2

0

a2
j − a2

0

+ νj

)
, ∆̄2(aj , 0) =

1
1− ν2

j

2a0aj

a2
j − a2

0

,
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Φ̄j(r, 0, τ) =
a0(± ln (r/aj) + (ajγj)−1)

1 + γ0,ja0(± ln (a0/aj) + (ajγj)−1)

∓2a0

∞∑
m=1

U0(µj,mr, µj,ma0)U0(µj,ma0, µj,ma0)
µ2

j,mN
2
j,m

exp (−kjµ
2
j,mτ),

H̄j(0, τ) = ±a2
0

[a2
0(a

2
0 − a2

j )
−1 ln (a0/aj)− 0.5± (ajγj)−1

1 + γ0,ja0(± ln (a0/aj) + (ajγj)−1)

+
4aj

a2
0 − a2

j

∞∑
m=1

U1(µj,maj , µj,ma0)U0(µj,ma0, µj,ma0)
N2

j,mµ
3
j,m

exp (−kjµ
2
j,mτ)

]
,

or, as ξ →∞, the properties

∆̄1(aj , ξ) ∼ ∓2(a0ξ)−1, ∆̄2(aj , ξ) ∼ −
4(a0 − aj)√

aja0
exp (∓ξ(a0 − aj)),

Φ̄j(r, ξ, τ) ∼ Φ̄j,st(r, ξ) ∼
1
ξ

√
a0

r
exp (∓ξ(a0 − r)), H̄j(ξ, τ) ∼ H̄j,st(ξ) ∼ ±

1 + νj

ξ2
(τ > 0).

The boundaries of integration λj,k in Eqs. (20) were chosen such that the integrands in the Fourier transforms
in the intervals (λj,k,∞) could be replaced by their asymptotic expressions. We find the values of the Fourier
integrals in the intervals [0, λj,k] by means of numerical integration using Filon’s method of quadratures [14].

Passing to the symmetric interval [−1, 1], we choose the solution of the above-derived systems of integral
equations at each time τi, i = 0, 1, 2, . . . , N [after discretization by formulas (19)] as

p(t, τi) =
ψ0(t, τi)√

1− t2
, f0,j(t, τi) =

ψj(t, τi)√
1− t2

, T (t, τi) = ϕ0(t, τi), T0,j(t, τi) = ϕj(t, τi), (21)

where ψl(t, τi) and ϕl(t, τi) (l = 0, 1, 2) are continuous and bounded functions, which are presented by even in-
terpolation Lagrangian polynomials of power 2n + 1 [15] in terms of the Chebyshev polynomials of the first kind
Tn(t) [12]:

ψl(t, τi) =
1

n+ 0.5

n+1∑
k=1

ψl(tk, τi)δk
(
1 + 2

n∑
m=1

T2m(tk)T2m(t)
)
,

ϕl(t, τi) =
1

n+ 0.5

n+1∑
k=1

ϕl(tk, τi)δk
(
1 + 2

n∑
m=1

T2m(tk)T2m(t)
)
.

Here tj = cos (π(2j − 1)/(2(2n+ 1))) (j = 1, . . . , n+ 1) are the zeroes of the Chebyshev polynomial of order 2n+ 1
of the first kind [12]; δj = 1 if j 6= n+ 1 and δj = 0.5 if j = n+ 1.

We substitute the expressions for the functions p(t, τi), f0,j(t, τi), T (t, τi), and T0,j(t, τi) via the interpolation
Lagrangian polynomials into systems of integral equations discrete in time. The integrals with logarithms are
calculated exactly by the known formulas [16], and the values of regular integrals are found approximately by the
Gaussian formulas of quadratures [8]. Assuming that t = tk (k = 1, . . . , n + 1), we reduce the systems of integral
equations at each time τi to systems of linear algebraic equations with respect to the expansion coefficients in the
interpolation polynomial ψl(tk, τi) and ϕl(tk, τi). They completely determine the change in the contact pressure
and the functions f0,j , T , and T0,j at this time.

Several comments should be made here.
Remark 1. The choice of the functions of the contact pressure and f0,j in the form (21) is caused by the

presence of a logarithmic singularity in the kernels of the integral equations [17, 18].
Remark 2. In calculating the integrals of the form

Jn(z) =

1∫
−1

Tn(x) ln |x− z| dx
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we used the formulas

Jn(z) =
n

2

[n/2]∑
m=0

(−1)m (n−m− 1)!
m!(n− 2m)!

2n−2mIn−2m(z),

Im(z) =

1∫
−1

xm ln |x− z| dx = − 1
m+ 1

m∑
k=0

1 + (−1)m−k

m+ 1− k
zk

+
1

m+ 1


(1− zm+1) ln (1− z) + ((−1)m + zm+1) ln (−1− z), z < −1,

(1− zm+1) ln (1− z) + ((−1)m + zm+1) ln (1 + z), |z| ≤ 1,

(1− zm+1) ln (z − 1) + ((−1)m + zm+1) ln (1 + z), z > 1,

which were obtained on the basis of explicit expressions for the Chebyshev polynomials [12]. Here [n] is the integer
part of the number n.

Remark 3. If the contact zone is unknown, then, choosing the values of c(τi), we try to satisfy the condition

|λ1ψ1(1, τi) + λ2ψ2(1, τi)| < ε (22)

in the case of an ideal thermal contact and the condition

|ψ0(1, τi)| < ε

for a nonideal thermal contact. Here ε is a certain number determining the calculation error (normally, ε ≈ 10−5),
which is caused by the numerical approach to solving the systems of integral equations. If these conditions are
satisfied, we can choose the function of the contact pressure in the form [18]

p(t, τi) = ψ3(t, τi)
√

1− t2, (23)

where ψ3(t, τi) is a continuously differentiable and bounded function. It follows from condition (22) that the heat
fluxes at the point z = c(τi) have a nonremovable discontinuity on the surface r = a0. Then, in the case of a
nonideal thermal contact, the expression for the contact pressure has the form (23), where ψ3(t, τi) is the paired
interpolation Lagrangian polynomial of power 2n+1 [15] in terms of the Chebyshev polynomials of the second kind
Un(t) [12]

ψ3(t, τi) =
2

n+ 1

n+1∑
j=1

ψ3(tj , τi)δj(1− t2j )
(
1 +

n∑
m=1

U2m(tj)U2m(t)
)
,

where tj = cos (πj/(2(n+ 1))), j = 1, . . . , n+ 1 are the zeroes of the Chebyshev polynomials of order 2n+ 1 of the
second kind [12]; for h→∞, we find the contact pressure by the formula

p(z, τi) = (λ1f0,1(z, τi) + λ2f0,2(z, τi))/(fω(τi)a0).

In numerical calculations, it is sufficient to use the time step τ1 = 5 sec and the power of the interpolation
Lagrangian polynomial n = 10. In this case, the relative error of calculations is within 5%.

Analysis of Results and Conclusions. For a numerical analysis of the problem considered, we chose
the steel–steel friction pair [Ej = 2 · 105 MPa, νj = 0.3, λj = 50 W/(m ·K), and kj = 0.125 · 10−4 m2/sec]
and the following values of the basic parameters: h = 10 kW/(m2 ·K), f = 0.1, γ1 = γ2 = 20 m−1, γ0,1 =
γ0,2 = 0 and 20 m−1, a1 = 3.5 cm, a0 = 5 cm, a2 = 6 cm, α1 = (1–15) · 10−6 K−1, α2 = 12 · 10−6 K−1, and
A = 0.001–0.005 m−1 (the parameter of contact density was n = 1). The load on the surface r = a2 and the relative
velocity of revolution were varied by the following laws:

1) q2(z, τ) = qst(z)(1− exp (−βτ)), ω(τ) = ω0;
2) q2(z, τ) = qst(z), ω(τ) = ω0(1− exp (−βτ)).

Here qst(z) = q0S(L− |z|); q0 = 20 MPa, ω0 = 0–2 rad/sec, β = 0.01 sec−1, and L = 0.1 m. The surface r = a1 is
free from the load, as was mentioned above.

The interaction interval being fixed, the contact stresses of the steady problem increase unlimitedly when
approaching the boundary (root singularity). But the singularity of the contact pressure occurs only under the
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Fig. 2. Distribution of the steady contact pressure: the solid curves refer to α1 = 6 · 10−6 K−1 (a)
and 15 · 10−6 K−1 (b); the dashed curves show the solution in the elastic formulation for c = 0.04
(1), 0.06 (2), 0.08 (3), and ≈ 0.1002 (α1 = 6 · 10−6 K−1), 0.1 (α1 = 15 · 10−6 K−1), and ≈ 0.1064 m
(ω0 = 0) (4); the vertical dashed lines indicate the magnitude of the contact zone.

condition c < c∗, where the boundary value of the contact zone c∗ depends on both the interval of load application L
and on the ratio between the coefficients of linear thermal expansion of the bodies. For c ≈ c∗, the condition
ψ0(1) = 0 is satisfied, and the contact stresses coincide with those calculated between the cylinders in the refined
formulation [6].

Yet, the parameter c∗ exists either in a purely elastic interaction of bodies or under the condition α1 � α2,
i.e., if the cylinders contact each other over a bounded simply connected domain [13]. If α1 > α2 (continuous
contact between the cylinders) [11], the contact stresses between the shroud ring and the cylinder are singular (with
a smaller coefficient at the singularity) with a rather large value of the half-width of the contact zone c.

These conclusions are illustrated in Fig. 2, which shows the distribution of the steady contact pressure for
ω0 = 1.0 rad/sec under conditions where the thermal contact between the bodies is not ideal and the surfaces r = a0

outside the contact region are thermally insulated (γ0,1 = γ0,2 = 0).
The numerical calculations show that it is possible to choose the load-distribution parameters or the material

of friction pairs such that the contact takes place in a zone smaller than the initial one.
The ideal thermal contact and heat transfer with the surfaces r = a0 of the bodies outside the interaction

zone introduce insignificant corrections to the above-described effects of the contact-stress distributions but have
a substantial influence on the temperature distributions in the bodies. As the thermal conductivity of the contact
zone h increases, the temperature of the bodies decreases; the higher the coefficient of linear thermal expansion
of the cylinder α1, the more intense this decrease. An increase in the heat transfer coefficients from the surfaces
r = a0 produces the opposite effect: namely, a local increase in the contact temperature is observed.

To illustrate these conclusions, Fig. 3 shows the distributions of the contact temperature in the steady
problem under the assumption that the shroud ring and the cylinder interact in a fixed contact zone.

The conclusions concerning the contact-temperature distribution are also valid for interaction of bodies
with a variable contact zone [boundary condition (1)]. Concerning the contact pressure, its distribution is largely
determined by the curvature of the shroud-ring surface A and the ratio between the coefficients of linear thermal
expansion of the bodies, whose influence on the contact pressure is illustrated in Figs. 4–6. In particular, an increase
in curvature of the contacting surface of the shroud ring or a proportional decrease in load intensity q0 reduces
the contact zone, and the contact-pressure distribution approaches the parabolic pressure distribution in Hertz’s
problem [9], which agrees with the results of [18]. Based on the data of Fig. 4, we can argue that the character of axial
variation of the compressing load exerts a substantial effect on the character of the contact-pressure distribution
even if Hertz’s theory is used to describe the mechanism of interaction of the bodies.
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Fig. 3. Distribution of the contact temperature in the steady problem with a fixed contact zone
c = 0.1 m (ω0 = 1.0 rad/sec): α1, 10−6 K−1: 15 (1), 12 (2), 9 (3), and 6 (4); the solid curves in
Fig. 3a refer to a nonideal thermal contact (the upper and lower curves show the data for the first
and second bodies, respectively); the dashed curves refer to an ideal contact (γ0,j = 0); Fig. 3b is
constructed for an ideal thermal contact (the solid and dashed curves refer to γ0,j = 0 and 20 m−1,
respectively).
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Fig. 4. Distributions of the contact pressure in the elastic problem: the
solid curves refer to n = 1, q0 = 20 MPa, and A = 0.001 (1), 0.002 (2),
and 0.004 m−1 (3); the dashed curves refer to n = 1, A = 0.001 m−1,
and q0 = 20 (1), 10 (2), and 5 MPa (3).

As the parameter A decreases or the contact density n increases, the contact pressure in the elastic problem
is little different from its distribution obtained in a refined formulation for interaction of two cylinders [6, 13],
i.e., in contrast to the contact Hertz’s problem [9], the interaction interval is bounded by the quantity c∗. In the
thermoelastic problem, we have c ≤ c∗ only if α1 < α2.

An increase in the coefficient of linear thermal expansion of the inner body increases both the contact zone
and the contact stresses, whereas a decrease in α1 leads to the opposite effects. In addition, as in the case of force
interaction, an increase in curvature of the contacting surface or a proportional decrease in load intensity q0 reduce
the contact zone for all values of α1. Nevertheless, if α1 > α2, the problem in this formulation becomes meaningless
with decreasing A or increasing n (a continuous contact between the bodies is observed).
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Fig. 5. Variation of the steady contact pressure along the z axis for α1, 10−6 K−1: 15 (1), 12 (2), 9
(3), and 6 (4) (A = 0.001 m−1 and n = 1); the dashed curve is the solution of the elastic problem.

Fig. 6. Distributions of the steady contact pressure for A = 0.001 (1), 0.002 (2), and 0.004 m−1 (3);
α1 = 15 · 10−6 K−1 (solid curves) and 6 · 10−6 K−1 (dashed curves).

Figure 5 shows the distributions of the steady contact pressure as a function of α1; the distributions of the
steady contact pressure for different values of A are plotted in Fig. 6.

Inspection of the solution of the quasi-static problem shows that the contact stresses monotonically approach
their steady values under the condition ω0 < ωcr (ωcr is the critical value of the velocity of revolution at which
the steady contact pressure in interaction of two long cylinders cannot be calculated [11, 13]), because, for the
above-indicated choice of the compressing load and velocity of revolution, steady values of these factors do exist.
As the contact becomes “weaker” for α1 < α2 and, vice versa, “stronger” for α1 > α2, the second variant of the
time evolution of the load and motion velocity (see above) can provide the following specific features of the contact
stresses reaching their steady values (for an initially fixed contact zone):

— for α1 > α2, the contact pressure, being bounded at τ = 0, acquires a root singularity with time (Fig. 7a);
— for α1 < α2, the singular (at τ = 0) contact pressure becomes bounded with time (Fig. 7b). The data in

Fig. 7 were obtained for a nonideal thermal contact. The calculation results show that the duration of transitional
processes for contact stresses is within 600–700 sec.

The difference in the coefficients of linear thermal expansion of the bodies leads to some analogies if the
contact zone varies with time [under the boundary condition (1)]. In particular, for α1 ≥ α2, the half-width of the
contact region increases with time; for α1 < α2, the half-width of the contact zone decreases with time if the second
law of variation of the load and angular velocity of revolution is used. If the first law is chosen, the contact zone
monotonically increases from zero to a corresponding steady value.

Figure 8 shows the time evolution of the half-width of the contact zone for different values of α1. The
temperature on the contact surface reaches the steady value more slowly (approximately during 800 sec), and the
duration of the transitional process increases with distance from the surface r = a0. In addition, the magnitude of
the contact zone has an appreciable effect on the temperature distribution obtained for a varied load (and constant
angular velocity) and for a varied relative angular velocity of revolution (and constant compressing load). If the
contact zone remains unchanged during the entire transitional process, there is only an insignificant difference in
temperature fields obtained for the first and second laws of variation of the load and angular velocity.
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Fig. 7. Variation of the contact pressure along the z axis in the quasi-static formulation for
α1 = 15 · 10−6 K−1, c = 0.11 m (a) and α1 = 6 · 10−6 K−1, and c = 0.103 m (b): τ = 0 (1),
50 (2), 100 (3), 200 (4), and 400 sec (5); the dashed curves refer to steady values.
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Fig. 8. Time evolution of the half-width of the contact zone for different values of α1, 10−6 K−1:
15 (1), 12 (2), 9 (3), and 6 (4) (A = 0.001 m−1). The horizontal dashed lines indicate the value
of c in the steady problem (the force problem is shown by the dot-and-dashed curve). The curves
emanating from the point c0 determining the value of the contact zone in the elastic problem are
obtained for a time-dependent angular velocity of revolution; the curves emanating from the point
c = 0 (not shown in the figure) correspond to a time-dependent compressing load.
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